US009424087B2

a2z United States Patent (10) Patent No.: US 9,424,087 B2
Archer et al. 45) Date of Patent: Aug. 23,2016
(54) OPTIMIZING COLLECTIVE OPERATIONS 5,333,279 A 7/1994 Dunning
5,377,333 A 12/1994 Nakagoshi et al.
(75) Inventors: Charles J. Archer, Rochester, MN (US); g’;ﬁ’gﬁ ﬁ ;‘;}ggg gry-pher ctal.
,541, ishnamoorthy et al.
James E. Carey, Rochester, MN (US); 5,590,334 A 12/1996 Saulpaugh et al.
Matthew W. Markland, Rochester, MN 5,617,538 A 4/1997 Heller
(US); Philip J. Sanders, Rochester, MN 5,668,815 A 9/1997 Gittinger et al.
(US) 5,721,828 A 2/1998 Frisch
5,822,604 A 10/1998 O_gasa\x{ara etal.
(73) Assignee: Internati({nal Business Machines g:g%é:ggg ﬁ ig;}ggg ggtl;};zél'
Corporation, Armonk, NY (US) 5,832,215 A 11/1998 Kato et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 1517 days.
EP 1835414 A2 9/2007
(21) Appl. No.: 12/770,286 P 2000156039 A 6/2000
(22) Filed: Apr. 29, 2010 (Continued)
OTHER PUBLICATIONS
(65) Prior Publication Data .
Office Action, U.S. Appl. No. 11/754,740, Apr. 11, 2011.
US 2011/0270986 Al Nov. 3, 2011 (Continued)
(51) Imt.ClL)
GO6F 15/173 (2006.01) Primary Examiner — Adnan Mirza
GOGF 9/50 (2006.01) (74) Attorney, Agent, or Firm — Brandon C. Kennedy; Grant
HO4L 29/08 (2006.01) A. Johnson; Kennedy Lenart Spraggins LLP
(52) US.CL
CPC oo GOGF 9/5011 (2013.01); HodL 67710 7 ABSTRACT
(2013.01) Optimizing collective operations including receiving an
(58) Field of Classification Search instruction to perform a collective operation type; selecting
CPC et HO04L 67/10 an optimized collective operation for the collective operation
USPC oot 709/226, 227, 707/107 type; performing the selected optimized collective operation;
See application file for complete search history. determining whether a resource needed by the one or more
nodes to perform the collective operation is not available; if a
(56) References Cited resource needed by the one or more nodes to perform the
collective operation is not available: notifying the other nodes
U.S. PATENT DOCUMENTS that the resource is not available; selecting a next optimized
4715030 A 12/1987 Nilsson collective operation; and performing the next optimized col-
48343540 A 6/1989 Stolfo lective operation.
5,101,480 A 3/1992 Shin et al.
5,105,424 A 4/1992 Flaig et al. 20 Claims, 10 Drawing Sheets

1 Node
14

Servire Node

e

= Senice — — —
| Application |

Frinter
120

inerface |

US 9,424,087 B2

Page 2
(56) References Cited 2007/0226686 Al 9/2007 Beardslee et al.
2007/0242611 Al 10/2007 Archer et al.
U.S. PATENT DOCUMENTS 2007/0245122 Al 10/2007 Archer et al.
2007/0288935 Al 12/2007 Tannenbaum et al.
5,864,712 A 1/1999 Carmichael et al. 2008/0077366 Al 3/2008 Neuse et al.
5,875,329 A 2/1999 Shan 2008/0109569 Al 5/2008 Leonard et al.
5,878,241 A 3/1999 Wilkinson et al. 2008/0127146 Al 5/2008 Liao et al.
5,892,923 A 4/1999 Yasuda et al. 2008/0201603 Al 8/2008 Ritz et al.
5,937,202 A 8/1999 Crosetto et al. 2008/0250325 Al 10/2008 Feigenbaum et al.
5,949,988 A 9/1999 Teisullin et al. 2008/0273543 Al 11/2008 Blocksome et al.
5,958,017 A 9/1999 Scott et al. 2008/0288949 Al 11/2008 Bohra et al.
6,000,024 A 12/1999 Maddox et al. 2008/0301683 Al 12/2008 Archer et al.
6,038,651 A 3/2000 VanHuben et al. 2009/0006662 Al 1/2009 Chen et al.
6,067,600 A 5/2000 Meeker et al. 2009/0019218 Al 1/2009 Sinclair et al.
6,076,131 A 6/2000 Nugent 2009/0019258 Al 1/2009 Shi
6,108,692 A 8/2000 Van Seters et al. 2009/0037377 Al 2/2009 Archer et al.
6,212,617 Bl 4/2001 Hardwick 2009/0037707 Al 2/2009 Blocksome
6,272,548 Bl 8/2001 Cotter et al. 2009/0043910 Al 2/2009 Barsness et al.
6,289,424 Bl 9/2001 Stevens 2009/0064140 Al 3/2009 Arimilli et al.
6,292,822 Bl 9/2001 Hardwick 2009/0064176 Al 3/2009 Ohly et al.
6,334,138 Bl 12/2001 Kureya 2009/0067334 Al 3/2009 Archer et al.
6,473,849 Bl 10/2002 Keller et al. 2009/0154486 Al 6/2009 Archer et al.
6,480,885 B1 11/2002 Olivier 2009/0196361 Al 8/2009 Chan et al.
6,647,438 Bl 11/2003 Conner ct al. 2009/0248712 A1 10/2009 Yuan
6,691,101 B2* 2/2004 MacNicoletal. 707/714 2009/0259713 Al 10/2009 Blumrich et al.
6,714,552 Bl 3/2004 Cotter 2009/0292905 Al 11/2009 Faraj
6,742,063 Bl 5/2004 Hellum et al. 2009/0310544 Al 12/2009 Jain et al.
6,754,211 Bl 6/2004 Brown 2009/0319621 Al 12/2009 Barsness et al.
6,834,301 Bl 12/2004 Hanchett 2010/0023631 Al 1/2010 Archer et al.
6,914,606 B2 7/2005 Amemiya et al. 2010/0082788 Al 4/2010 Mundy
6,954,806 B2 10/2005 Yosimoto et al. 2010/0122268 Al 52010 lJia
7,133,359 B2 11/2006 Weis 2010/0185718 Al 7/2010 Archer et al.
7143392 B2 11/2006 Ti et al. 2010/0191911 Al 7/2010 Heddes et al.
7.171,484 Bl 1/2007 Krause et al. 2011/0010471 Al 1/2011 Heidelberger et al.
7,203,743 B2 4/2007 Shah-Heydari 2011/0119673 Al 5/2011 Bloch et al.
7,263,598 B2 8/2007 Ambuel 2011/0125974 Al 5/2011 Anderson
7,263,698 B2 8/2007 Wildhagen et al. 2011/0153908 Al 6/2011 Schaefer et al.
7,284,033 B2 10/2007 Jhani 2011/0179134 Al 7/2011 Mayo et al.
7,363,474 B2 4/2008 Rodgers et al. 2011/0258627 Al 10/2011 Faraj et al.
7,496,699 B2 2/2009 Pope et al. 2011/0267197 Al 11/2011 Archer et al.
7,539,989 B2 5/2009 Blackmore et al. 2012/0197882 Al 8/2012 Jensen
7,555,566 B2 6/2009 Blumrich et al.
7,571,439 Bl 8/2009 Rabinovici et al. FOREIGN PATENT DOCUMENTS
7,587,516 B2 9/2009 Bhanot et al.
7,590,983 B2 9/2009 Neimanetal. 718/100 Jp 2003317487 A 11/2003
7,600,095 B2 10/2009 Archer et al. WO WO 2007/057281 Al 5/2007
7,640,315 Bl 12/2009 Meyer et al.
7,664,110 Bl 2/2010 Lovettet al. OTHER PUBLICATIONS
7,707,366 B2 4/2010 Tagawa
7,739,451 Bl 6/2010 Wiedenman et al. Final Office Action, U.S. Appl. No. 12/124,756, Mar. 28, 2011.
7,774,448 B2 8/2010 Shah-Heydari http://betterexplained.com/articles/swap-two-variables-using-xor,
7,796,527 B2 9/2010 Archer et al. Jan. 16, 2007, betterexplained.com.
7,808,930 B2 10/2010 Boers etal. Office Action, U.S. Appl. No. 11/754,782, Jun. 23, 2011.
7,853,639 B2 12/2010 Archer etal. Final Office Action, U.S. Appl. No. 12/053,842, May 23, 2011.
7,936,681 B2 52011 Gongetal. Office Action, U.S. Appl. No. 12/176,816, Jun. 10, 2011.
7,974,221 B2 7/2011 Tamassia et al. Edmonds. “AM+t: A G alized Acti »
) onds, ++: eneralized Active Message Framework,” pp.
8,161,268 B2 4/2012 Faraj 1-10. Sep, 2010
8,161,480 B2 4/2012 Archer et al. -9, >ep. P . .
2002/0016901 Al 2/2002 Carvey et al. Bangalore. “Extending the Message Passing Interface (MPI)”, Proc.
2002/0054051 Al 5/2002 Ladd of the 1994 Conf. on Scalable Parallel Libraries, IEEE, pp. 106-118,
2002/0065984 Al 5/2002 Thompson et al. 1995.
2002/0144027 Al 10/2002 Schmisseur Bafna, “Coprocessor Design to Support MPI Primitives in
2003/0041173 Al 2/2003 Hoyle Configurable Mutliprocessors;” Integration, the VSLI Journal, vol.
2003/0182376 Al 9/2003 Smith 40, Issue 3 , pp. 235-252, Apr. 2007.
2003/0188054 Al 10/2003 Yosimoto et al. Keller, Rainer; “MPI Development Tools and Applications for the
2003/0212877 Al 11/2003 Dally et al. Grid,” Jun. 2003, pp. 1-12.
2004/0034678 Al 2/2004 Kuszmaul et al. Tang, Hong; “Optimizing threaded MPI execution on SMP clusters,”
2004/0073590 Al 4/2004 Bhanot et al. International Conference on Supercomputer, Jun. 2001 381-392
2005/0094577 Al 5/2005 Ashwood-Smith " . onsupercomputer, Al JUY L, pp. :
5005/0135395 Al 6/2005 Fan of al. Sunggu Lee; Shin, K.G., “Interleaved all-t(_)-a!l reliable broadcast on
2005/0165980 Al 7/2005 Clayton et al. meshes e.md hypercubes,” Parallel and Distributed Systems, IEEE
2005/0243711 Al 11/2005 Alicherry et al. Transactions on, vol. 5, pp. 449-458, May 1994.
2006/0156312 Al 7/2006 Supalov Wikipedia. “Depth-First Search” May 5, 2007. http://web.archive.
2006/0168359 Al 7/2006 Bissessur et al. org/web/20070505212029/http://en.wikipedia.org/wiki/Depth-
2006/0179181 Al 8/2006 Seong first_ Search.
2006/0182137 Al 8/2006 Zhou et al. Bruck J., et al. Efficient Algorithms for all-to-all communications in
2006/0277323 Al 12/2006 Joublin et al. multiportmessage-passing systems, Parallel and Distributed Sys-
2007/0110063 Al 5/2007 Tang et al. tems, IEEE Transactions on, vol. 8, Issue: 11, pp. 1143-1156, Nov.
2007/0174558 Al 7/2007 Jia et al. 1997.

US 9,424,087 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

U.S. Appl. No. 60/271,124, filed Feb. 24, 2001, pp. 12-13, 27 and
42-43.

Sistare, et al.; Optimization of MPI collectives on clusters of large-
scale SMP’s, Conference on High Performance Networking and
Computing, Proceedings of the 1999 ACM/IEEE conference on
Supercomputing; 1999.

Tanenbaum, Structured Computer Organization, Second Edition,
Prentice-Hall, Inc., 1984.

Rosenberg; Dictionarty of Computers, Information Processing &
Telecommunications, Second Edition, John Wiley & Sons, 1987.
Herbordt, M.C., Weems, C.C.; “Computing Parallel Prefix and
Reduction Using Coterie Structures”; Frontiers of Massively Parallel
Computation; 1992; Fourth Symposium; Oct. 19-21, 1992; pp. 141-
149.

Fisher, et al.; “Computing the Hough Transform on a Scar Line Array
Processor”; IEEE Transactions on Pattern Analysis and Machine
Intelligence; vol. I, No. 3; Mar. 1989; pp. 262-265.

Office Action, U.S. Appl. No. 11/279,620, Mar. 4, 2008.

Office Action, U.S. Appl. No. 11/279,620, Sep. 3, 2008.

Office Action, U.S. Appl. No. 11/279,620, Dec. 29, 2008.

Office Action, U.S. Appl. No. 11/769,367, Apr. 3, 2009.

Office Action, U.S. Appl. No. 11/459,387, Dec. 13, 2007.

Office Action, U.S. Appl. No. 11/459,387, Jul. 11, 2008.

Office Action, U.S. Appl. No. 11/459,387, Mar. 18, 2009.

Office Action, U.S. Appl. No. 11/737,286, Feb. 9, 2009.

Office Action, U.S. Appl. No. 11/737,209, Jul. 20, 2009.

Office Action, U.S. Appl. No. 11/843,090, Sep. 4, 2009.

M. Matsuda, T. Koduh,Y. Kodama, R. Takano, Y. Ishikawa, “Efficient
MPI Collective Operations for Clusters in Longand-Fast Networks,”
cluster, pp. 1-9, 2006 IEEE International Conference on Cluster
Computing, Sep. 2006.

DADO: A Tree-Structured Machine Architecture for Production Sys-
tems, Stolfo et al. AAAI Proceedings, 1982, Columbia University.
Eunseuk Oh, An All-Reduce Operation in Star Networks Using All-
to-All Broadcast Communication Patterns, 2005, 1-8.

Xin Yuan, Bandwidth Efficient All-reduce Operation on Tree Topolo-
gies, 2001, 1-8.

Final Office Action, U.S. Appl. No. 11/769,367, Sep. 28, 2010.
Final Office Action, U.S. Appl. No. 12/053,842, Oct. 18, 2010.
Advisory Action, U.S. Appl. No. 12/053,842, Jan. 11, 2011.

Office Action, U.S. Appl. No. 12/053,842, Mar. 1, 2011.

Office Action, U.S. Appl. No. 12/503,902, Oct. 6, 2010.

Office Action, U.S. Appl. No. 12/060,492, May 27, 2010.

Final Office Action, U.S. Appl. No. 12/060,492, Dec. 2, 2010.
Office Action, U.S. Appl. No. 12/124,763, Oct. 14, 2010.

Office Action, U.S. Appl. No. 12/124,756, Oct. 18, 2010.

Notice of Allowance, U.S. Appl. No. 11/754,782, Dec. 16, 2011.
Notice of Allowance, U.S. Appl. No. 11/754,740, Nov. 8, 2011.
Notice of Allowance, U.S. Appl. No. 12/053,842, Oct. 14, 2011.
Office Action, U.S. Appl. No. 12/060,492, Jul. 16, 2012.

Notice of Allowance, U.S. Appl. No. 12/124,756, Dec. 14, 2011.
Office Action, U.S. Appl. No. 12/124,745, Jun. 15, 2012.

Office Action, U.S. Appl. No. 12/770,286, Jul. S, 2012.

Office Action, U.S. Appl. No. 12/760,020, Feb. 13, 2012.

Notice of Allowance, U.S. Appl. No. 12/760,020, Jul. 30, 2012.
Notice of Allowance, U.S. Appl. No. 12/124,745, Mar. 6, 2013.
Final Office Action, U.S. Appl. No. 12/770,286, Jan. 29, 2013.
Final Office Action, U.S. Appl. No. 12/748,594, Mar. 22, 2013.

Notice of Allowance, U.S. Appl. No. 12/790,037, Mar. 15, 2013.
Final Office Action, U.S. Appl. No. 13/459,832, Jan. 4, 2013.
Notice of Allowance, U.S. Appl. No. 13/585,993, Jan. 31, 2013.
Office Action, U.S. Appl. No. 13/672,740, Apr. 2, 2013.

U.S. Appl. No. 12/770,286, filed Apr. 2010, Archer et al.

U.S. Appl. No. 12/748,594, filed Mar. 2010, Archer et al.

Final Office Action Dated Oct. 30, 2009 in U.S. Appl. No.
11/769,367.

Office Action Dated Jan. 14, 2010 in U.S. Appl. No. 11/843,083.
Office Action Dated Apr. 28, 2010 in U.S. Appl. No. 11/769,367.
Faraj, A., et al. “Automatic Generation and Tuning of MPI Collective
Communication Routines”, ICS’ 05, Jun. 20-22, Boston, MA, USA.
pp. 393-402, ACM.

Shrimali, G., et al., “Building Packet Buffers Using Interleaved
Memories”, (Proc. Sixth Workshop High Performance Switching and
Routing (HPSR °05), May 2005, pp. 1-5, IEEE.

Ong, H., et al.,, “Kernel-level Single System Image for Petascale
Computing”, SIGOPS Oper. Syst. Rev., Apr. 2006, pp. 50-54, vol. 40,
No. 2, ACM, New York, NY, USA.

Foster, 1., et al., “Message Passing and Threads,” Sourcebook of
Parallel Computing, (Month Unknown) 2003, pp. 301-317, Morgan
Kaufmann Publishers Inc. URL: http://web.eecs.utk.eduw/~dongarra/
WEB-PAGES/SPRING-2006/chapter10.pdf.

Simonsson, P., “Implementation of a Distributed Shared Memory
using MPL” Chalmers University of Technology and Goteborg Uni-
versity, 2004, Supervised together with Anders Gidenstam, Master’s
Thesis, Finished Jan. 11, 2005, pp. 1-98, Goteborg, Sweden.
Message Passing Interface Forum,“MPI: A Message-Passing Inter-
face Standard Version 2.2”, MPI Specification, Sep. 4, 2009, pp.
1-647, High Performance Computing Center Stuttgart (HLRS).
Vetter, J., et al., “Real-Time Performance Monitoring, Adaptive Con-
trol, and Interactive Steering of Computational Grids”, International
Journal of High Performance Computing Applications Winter 2000,
pp. 357-366 (10 Pages), vol. 14, No. 4, Sage Publications, Inc. Thou-
sand Oaks, CA, USA.

Wikipedia, “Cache (computing)—Wikipedia, the free encyclope-
dia”, Cache (computing), Edited by EmausBot, Jul. 22, 2011,
Accessed Aug. 10, 2013, 6 Pages.

Wikipedia, “Fuzzy logic—Wikipedia, the free encyclopedia”, Fuzzy
Logic, Edited by Jeff Silvers, Aug. 1, 2011, Accessed Aug. 10, 2013,
10 Pages.

Wikipedia, “Depth-first search—Wikipedia, the free encyclopedia”,
http://web.archive.org/web/20070505212029/http://en.wikipedia.
org/wiki/Depth-first search, Apr. 29, 2009, pp. 1-5.

Sistare, S., et al., “Optimization of MPI collectives on clusters of
large-scale SMP’s”, Conference on High Performance Networking
and Computing, Proceedings of the 1999 ACM/IEEE Conference on
Supercomputing; Nov. 1999, pp. 1-14, ACM, New York, NY, USA.
Tanenbaum, A., “Structured Computer Organization”, Jan. 1984, pp.
1-5, Second Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA,
ISBN: 0-13-854489-1.

Shaw, D., et al., DADO: A Tree-Structured Machine Architecture for
Production Systems, AAAI-82 Proceedings, Jan. 1982, AAAI (www.
aaai.org), pp. 242-46, AAAI Press.

Better Explained, “Swap two variables using XOR I Bet-
terExplained”, http://betterexplained.com/articles/swap-two-vari-
ables-using-xor, Accessed Jun. 4, 2011, pp. 1-8.

Rosenberg, J., “Dictionary of Computers, Information Processing &
Telecommunications”, Sep. 1987, pp. 1-5, Second Edition, John
Wiley & Sons, New York, NY, USA.

* cited by examiner

U.S. Patent Aug. 23,2016 Sheet 1 of 10 US 9,424,087 B2

l Compute Nodes 102 !
A
,, : N
Collective Operations Operational
Optimization Module 155 Group

/O Node {/O Node Service Node Parallel
110 114 116
Computer |

— Senvice — — —
. Application |
. Interface |
126

User

Terminal § 12

122

FIG. 1

U.S. Patent Aug. 23,2016 Sheet 2 of 10 US 9,424,087 B2

Compute Node 152

Processing Cores |
164
RAM 156
ALU
166 Application 158
h Messaging Module 160
DMA Controller
195
- Collective Operations Optimization Module
DMA Engine Memory Bus 155
197 154
Bus Adapter Operating System 162
194

Extension Bus 168

Point :I'o Point
Adapter
Ethernet JTAG 180
Global Combining
Adapter Slave Ad A4 Network Adapter
172 176 188
\ v
+X -Y
181 Y 184 Y
Gigabit JTAG 1_>; T Z5 Children Parent
Ethernet Master Ty \y — ! 190 192
174 178
— - 183 186 . J
T T Y
\ ~ J Collective
Point To Point Oﬁe{ahogs
Network iggr F|G 2

108

U.S. Patent Aug. 23,2016 Sheet 3 of 10 US 9,424,087 B2

-Y Compute Node 152
184
X Point To Point I
1_8) Adapter > 181
182 180 k\
A \ . Y
183
\J
186 FIG. 3A
Parent
192

Compute Node 152

Global Combining
Network Adapter
188

A A

FIG. 3B

Children
190

U.S. Patent Aug. 23,2016 Sheet 4 of 10 US 9,424,087 B2

= &
AN
=+
=

182

Dots Represent
Compute Nodes

-Y

102
184
\/
-Z
186
A Parallel Operations Network, Organized FIG. 4

As A Torus’ Or ‘Mesh’
108

U.S. Patent Aug. 23,2016 Sheet 5 of 10 US 9,424,087 B2

Physical Root

Links
103

5 0 6. Branch
Nodes
204

Leaf

® 00 00 o0 o0 o 00 o [

A Collective Operations Organized As A Dots Represent
Binary Tree Compute Nodes

106 102

FIG. 5

U.S. Patent Aug. 23,2016 Sheet 6 of 10 US 9,424,087 B2

Compute Node 603
! Ethemet Fabric 628 | Accelerator 604
| : bl P 848
: rocessor
—] 0/S 644 : 950
- : 1 651}| Architectural

SLMPM 646 Registers

634 5
T Shared Memory 650

Space 658
D Accelerator . DMA Controller
v 605 Collective 685
. i Ethernet Operations —
H : Optimization DMA Engine 684
L : Module 155
: Lo e 660 f—rl
: 31 o 636 PCle
: 921, o _ 638 Fabric
: : LmksiS ' v 630 H
""" Ethernet Adapter |—=:======r==t==wc==c=t = -1 pQlg Adapter [
661 660 :
Queue || Queue Queue || Queue
665 664 Host Application 663 662
Program 669
System Level Message \‘
Passing Module Request 668 Performance
646 - Data
I Message 670 Size 672 674
: Compute
SMT 680 Send/Receive 681 Data To Be :| Node
Protocols l ” l Transmitied 676 5 602
178 Y | omags2 || PUTIGET 683 | P
Collective Operations :
| 0/S 845 i Optimization Module 155
Memory
Bus 653 gg;cessor Architectural :
Host Computer 610 - Registers £5¢
. ———— ' '
t Compute Compute
Node |« | Node

Hybrid Computing Environment 600 602 FIG. 6 602

U.S. Patent Aug. 23,2016 Sheet 7 of 10 US 9,424,087 B2

/ Instruction 702 /

Receiving, By Each Of The Nodes In The Operational Group, An
Instruction To Perform A Collective Operation Type 704

Y

Prioritized List 706

Collective Operations 708
Collective Operation Type 710

!

Selecting, By Each Of The Nodes In The Operational Group
From A List Of Optimized Collective Operations, An Optimized
Collective Operation For The Collective Operation Type 712

!

Performing, By Each Of The Nodes In The Operational Group,
The Selected Optimized Collective Operation 714

Resource
Unavailable?
718

END No

Yes
Y

Notifying, By One Or More Of The Nodes In The Operational
Group, The Other Nodes That The Resource Is Not Available
120

!

Selecting, By Each Of The Nodes In The Operational Group
From The List Of Optimized Collective Operations, A Next
Optimized Collective Operation 722

FIG. 7

U.S. Patent Aug. 23,2016 Sheet 8 of 10 US 9,424,087 B2

Receiving, By Each Of The Nodes In The
/ Instruction 702 /;-» Operational Group, An Instruction To
Perform A Collective Operation Type 704

:

Selecting, By Each Of The Nodes In The List 706
Operational Group From A List Of Optimized —
Collective Operations, An Optimized Collective |-¢—

v X . Collective Operations List 708
Operation For The C?l{gctlve Operation Type Collective Operation Type 710

Y

Performing, By Each Of The Nodes In The Operational Group,
The Selected Optimized Collective Operation 714

Copying The Contents Of The Source Buffer Before
Performing The Optimized Collective Operation 802

Resource
Unavailable?
718

Yes
A

Notifying, By One Or More Of The Nodes In The Operational
Group, The Other Nodes That The Resource Is Not Available
720

v

Selecting, By Each Of The Nodes In The Operational Group
From The List Of Optimized Collective Operations, A Next
Optimized Collective Operation 722

Restoring The Copied Contents To The Source Buffer

804 FIG. 8

U.S. Patent Aug. 23,2016 Sheet 9 of 10 US 9,424,087 B2

Receiving, By Each Of The Nodes In The
/ Instruction 702 /;-» Operational Group, An Instruction To
Perform A Collective Operation Type 704

l

Selecting, By Each Of The Nodes In The List 706
Operational Group From A List Of Optimized —
Collective Operations, An Optimized Collective |«—

v , : Collective Operations List 708
Operation For The C%lgc’uve Operation Type Collective Operation Type 710

Y

Performing, By Each Of The Nodes In The Operational Group,
The Selected Optimized Collective Operation 714

Blocking Until Receiving A Notification That The
Operational Group Is Valid 950

Resource
Unavailable?
718

Yes
\ J

Notifying, By One Or More Of The Nodes In The Operational
Group, The Other Nodes That The Resource Is Not Available
120

!

Selecting, By Each Of The Nodes In The Operational Group
From The List Of Optimized Collective Operations, A Next
Optimized Collective Operation 722

FIG. 9

U.S. Patent Aug. 23,2016 Sheet 10 of 10 US 9,424,087 B2

Receiving, By Each Of The Nodes In The
/ Instruction 702 /———-» Operational Group, An Instruction To
Perform A Collective Operation Type 704

:

List 706

Selecting, By Each Of The Nodes In The
Operational Group From A List Of Optimized
Collective Operations, An Optimized Collective |«¢—

\ , ; Collective Operations List 708
Operation For The Cgl;gctlve Operation Type Collective Operation Type 710

Y

Performing, By Each Of The Nodes In The Operational Group,
The Selected Optimized Collective Operation 714

Beginning A Transaction But Not Committing The
Transaction 902

Resource
Unavailable?
718

Yes
v

Notifying, By One Or More Of The Nodes In The Operational
Group, The Other Nodes That The Resource Is Not Available
120

v

Selecting, By Each Of The Nodes In The Operational Group
From The List Of Optimized Collective Operations, A Next
Optimized Collective Operation 722

Starting A New Transaction Without Committing The
Previous Transaction 904 F|G_ 1 O

US 9,424,087 B2

1
OPTIMIZING COLLECTIVE OPERATIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for optimizing
collective operations.

2. Description of Related Art

The development of the EDVAC computer system of 1948
is often cited as the beginning of the computer era. Since that
time, computer systems have evolved into extremely compli-
cated devices. Today’s computers are much more sophisti-
cated than early systems such as the EDVAC. Computer sys-
tems typically include a combination of hardware and
software components, application programs, operating sys-
tems, processors, buses, memory, input/output devices, and
so on. As advances in semiconductor processing and com-
puter architecture push the performance of the computer
higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the
hardware, resulting in computer systems today that are much
more powerful than just a few years ago.

Distributed computing is an area of computer technology
that has experienced advances. Distributed computing gener-
ally refers to computing with multiple semi-autonomous
computer systems that communicate through a data commu-
nications network. The semi-autonomous computer systems
interact with one another in order to achieve a common goal.
A computer program or application that executes in a distrib-
uted computing system may be referred to as a distributed
program. Distributed computing may also refers to the use of
distributed computing systems to solve computational prob-
lems. In distributed computing, a problem may be divided
into many tasks, each of which may be solved by one of the
semi-autonomous computer systems.

Some distributed computing systems are optimized to per-
form parallel computing. Parallel computing is the simulta-
neous execution of the same task (split up and specially
adapted) on multiple processors in order to obtain results
faster. Parallel computing is based on the fact that the process
of'solving a problem usually can be divided into smaller tasks,
which may be carried out simultaneously with some coordi-
nation.

Parallel computers execute parallel algorithms. A parallel
algorithm can be split up to be executed a piece at a time on
many different processing devices, and then put back together
again at the end to get a data processing result. Some algo-
rithms are easy to divide up into pieces. Splitting up the job of
checking all of the numbers from one to a hundred thousand
to see which are primes could be done, for example, by
assigning a subset of the numbers to each available processor,
and then putting the list of positive results back together. In
this specification, the multiple processing devices that
execute the individual pieces of a parallel program are
referred to as ‘compute nodes.” A parallel computer is com-
posed of compute nodes and other processing nodes as well,
including, for example, input/output (‘I/O’) nodes, and ser-
vice nodes.

Parallel algorithms are valuable because it is faster to per-
form some kinds of large computing tasks via a parallel
algorithm than it is via a serial (non-parallel) algorithm,
because of the way modern processors work. It is far more
difficult to construct a computer with a single fast processor
than one with many slow processors with the same through-
put. There are also certain theoretical limits to the potential
speed of serial processors. On the other hand, every parallel

10

15

20

25

30

35

40

45

50

55

60

65

2

algorithm has a serial part and so parallel algorithms have a
saturation point. After that point adding more processors does
not yield any more throughput but only increases the over-
head and cost.

Parallel algorithms are designed also to optimize one more
resource the data communications requirements among the
nodes of a parallel computer. There are two ways parallel
processors communicate, shared memory or message pass-
ing. Shared memory processing needs additional locking for
the data and imposes the overhead of additional processor and
bus cycles and also serializes some portion of the algorithm.

Message passing processing uses high-speed data commu-
nications networks and message buffers, but this communi-
cation adds transfer overhead on the data communications
networks as well as additional memory need for message
buffers and latency in the data communications among nodes.
Designs of parallel computers use specially designed data
communications links so that the communication overhead
will be small but it is the parallel algorithm that decides the
volume of the traffic.

Many data communications network architectures are used
for message passing among nodes in parallel computers.
Compute nodes may be organized in a network as a ‘torus’ or
‘mesh,” for example. Also, compute nodes may be organized
in a network as a tree. A torus network connects the nodes in
a three-dimensional mesh with wrap around links. Every
node is connected to its six neighbors through this torus
network, and each node is addressed by its x,y,z coordinate in
the mesh. In such a manner, a torus network lends itself to
point to point operations. In a tree network, the nodes typi-
cally are connected into a binary tree: each node has a parent,
and two children (although some nodes may only have zero
children or one child, depending on the hardware configura-
tion). Although a tree network typically is inefficient in point
to point communication, a tree network does provide high
bandwidth and low latency for certain collective operations,
message passing operations where all compute nodes partici-
pate simultaneously, such as, for example, an allgather opera-
tion. In computers that use a torus and a tree network, the two
networks typically are implemented independently of one
another, with separate routing circuits, separate physical
links, and separate message buffers.

SUMMARY OF THE INVENTION

Optimizing collective operations by an operational group
on a parallel computer, wherein the operational group com-
prises a plurality of compute nodes including receiving, by
each of the nodes in the operational group, an instruction to
perform a collective operation type; selecting, by each of the
nodes in the operational group from a list of optimized col-
lective operations, an optimized collective operation for the
collective operation type; performing, by each of the nodes in
the operational group, the selected optimized collective
operation; determining, by one or more of the nodes in the
operational group, whether a resource needed by the one or
more nodes to perform the collective operation is not avail-
able; if'a resource needed by the one or more nodes to perform
the collective operation is not available: notifying, by one or
more of the nodes in the operational group, the other nodes
that the resource is not available; selecting, by each of the
nodes in the operational group from the list of optimized
collective operations, a next optimized collective operation;
and performing, by each ofthe nodes in the operational group,
the next optimized collective operation.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more

US 9,424,087 B2

3

particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary distributed computing sys-
tem for optimizing collective operations by an operational
group according to embodiments of the present invention.

FIG. 2 sets forth a block diagram of an exemplary compute
node useful in a parallel computer capable of optimizing
collective operations by an operational group according to
embodiments of the present invention.

FIG. 3A illustrates an exemplary Point To Point Adapter
useful in systems capable of optimizing collective operations
by an operational group on a parallel computer according to
embodiments of the present invention.

FIG. 3B illustrates an exemplary Global Combining Net-
work Adapter useful in systems capable of optimizing collec-
tive operations by an operational group on a parallel computer
according to embodiments of the present invention.

FIG. 4 sets forth a line drawing illustrating an exemplary
data communications network optimized for point to point
operations useful in systems capable of optimizing collective
operations by an operational group on a parallel computer in
accordance with embodiments of the present invention.

FIG. 5 sets forth a line drawing illustrating an exemplary
data communications network optimized for collective
operations useful in systems capable of optimizing collective
operations by an operational group on a parallel computer in
accordance with embodiments of the present invention.

FIG. 6 sets forth a further exemplary distributed computing
system for optimizing collective operations by an operational
group according to embodiments of the present invention in
which the distributed computing system is implemented as a
hybrid computing environment.

FIG. 7 sets forth an exemplary method of optimizing col-
lective operations by an operational group on a parallel com-
puter according to embodiments of the present invention.

FIG. 8 sets forth another exemplary method of for optimiz-
ing collective operations by an operational group on a parallel
computer according to embodiments of the present invention
that preserves the input values for the collective operation.

FIG. 9 sets forth another exemplary method of for optimiz-
ing collective operations by an operational group on a parallel
computer according to embodiments of the present invention.

FIG. 10 sets forth another exemplary method of for opti-
mizing collective operations by an operational group on a
parallel computer according to embodiments of the present
invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for optimiz-
ing collective operations by an operational group on a parallel
computer in accordance with embodiments of the present
invention are described with reference to the accompanying
drawings, beginning with FIG. 1. FIG. 1 illustrates an exem-
plary distributed computing system for optimizing collective
operations by an operational group on a parallel computer
according to embodiments of the present invention. The sys-
tem of FIG. 1 includes a parallel computer (100), non-volatile
memory for the computer in the form of data storage device
(118), an output device for the computer in the form of printer
(120), and an input/output device for the computer in the form

10

20

25

30

35

40

45

50

55

60

65

4

of computer terminal (122). Parallel computer (100) in the
example of FIG. 1 includes a plurality of compute nodes
(102).

The compute nodes (102) are coupled for data communi-
cations by several independent data communications net-
works including a Joint Test Action Group (‘JTAG”) network
(104), a global combining network (106) which is optimized
for collective operations, and a torus network (108) which is
optimized point to point operations. The global combining
network (106) is a data communications network that
includes data communications links connected to the com-
pute nodes so as to organize the compute nodes as a tree. Each
data communications network is implemented with data com-
munications links among the compute nodes (102). The data
communications links provide data communications for par-
allel operations among the compute nodes of the parallel
computer. The links between compute nodes are bi-direc-
tional links that are typically implemented using two separate
directional data communications paths.

In addition, the compute nodes (102) of parallel computer
are organized into at least one operational group (132) of
compute nodes for collective parallel operations on parallel
computer (100). An operational group of compute nodes is
the set of compute nodes upon which a collective parallel
operation executes. Collective operations are implemented
with data communications among the compute nodes of an
operational group. Collective operations are those functions
that involve all the compute nodes of an operational group. A
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. Such an
operational group may include all the compute nodes in a
parallel computer (100) or a subset all the compute nodes.
Collective operations are often built around point to point
operations. A collective operation requires that all processes
on all compute nodes within an operational group call the
same collective operation with matching arguments. A
‘broadcast’ is an example of a collective operation for moving
data among compute nodes of an operational group. A
‘reduce’ operation is an example of a collective operation that
executes arithmetic or logical functions on data distributed
among the compute nodes of an operational group. An opera-
tional group may be implemented as, for example, an MPI
‘communicator.

‘MPI refers to ‘Message Passing Interface,” a prior art
parallel communications library, a module of computer pro-
gram instructions for data communications on parallel com-
puters. Examples of prior-art parallel communications librar-
ies that may be improved for use with systems according to
embodiments of the present invention include MPI and the
‘Parallel Virtual Machine’ (‘PVM”) library. PVM was devel-
oped by the University of Tennessee, The Oak Ridge National
Laboratory, and Emory University. MPI is promulgated by
the MPI Forum, an open group with representatives from
many organizations that define and maintain the MPI stan-
dard. MPI at the time of this writing is a de facto standard for
communication among compute nodes running a parallel pro-
gram on a distributed memory parallel computer. This speci-
fication sometimes uses MPI terminology for ease of expla-
nation, although the use of MPI as such is not a requirement
or limitation of the present invention.

Some collective operations have a single originating or
receiving process running on a particular compute node in an
operational group. For example, in a ‘broadcast’ collective
operation, the process on the compute node that distributes
the data to all the other compute nodes is an originating

US 9,424,087 B2

5

process. In a ‘gather’ operation, for example, the process on
the compute node that received all the data from the other
compute nodes is a receiving process. The compute node on
which such an originating or receiving process runs is
referred to as a logical root.

Most collective operations are variations or combinations
of four basic operations: broadcast, gather, scatter, and
reduce. The interfaces for these collective operations are
defined in the MPI standards promulgated by the MPI Forum.
Algorithms for executing collective operations, however, are
not defined in the MPI standards. In a broadcast operation, all
processes specify the same root process, whose buffer con-
tents will be sent. Processes other than the root specify receive
buffers. After the operation, all buffers contain the message
from the root process.

In a scatter operation, the logical root divides data on the
root into segments and distributes a different segment to each
compute node in the operational group. In scatter operation,
all processes typically specify the same receive count. The
send arguments are only significant to the root process, whose
buffer actually contains sendcount*N elements of a given
data type, where N is the number of processes in the given
group of compute nodes. The send buffer is divided and
dispersed to all processes (including the process on the logi-
cal root). Each compute node is assigned a sequential identi-
fier termed a ‘rank.” After the operation, the root has sent
sendcount data elements to each process in increasing rank
order. Rank O receives the first sendcount data elements from
the send buffer. Rank 1 receives the second sendcount data
elements from the send buffer, and so on.

A gather operation is a many-to-one collective operation
that is a complete reverse of the description of the scatter
operation. That is, a gather is a many-to-one collective opera-
tion in which elements of a datatype are gathered from the
ranked compute nodes into a receive buffer in a root node.

A reduce operation is also a many-to-one collective opera-
tion that includes an arithmetic or logical function performed
on two data elements. All processes specify the same ‘count’
and the same arithmetic or logical function. After the reduc-
tion, all processes have sent count data elements from com-
puter node send buffers to the root process. In a reduction
operation, data elements from corresponding send buffer
locations are combined pair-wise by arithmetic or logical
operations to yield a single corresponding element in the root
process’s receive buffer. Application specific reduction
operations can be defined at runtime. Parallel communica-
tions libraries may support predefined operations. MPI, for
example, provides the following predefined reduction opera-
tions:

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum

MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

Each compute node (102) of the operational group (132) of
FIG. 1 has installed upon it a collective operations optimiza-
tion module (155), a module of automated computing
machinery for optimizing collective operations by an opera-
tional group on a parallel computer according to embodi-
ments of the present invention. The collective operations opti-

15

30

45

50

55

60

6

mization module is a module of automated computing
machinery capable of receiving, by each of the nodes in the
operational group, an instruction to perform a collective
operation type; selecting, by each of the nodes in the opera-
tional group from a list of optimized collective operations, an
optimized collective operation for the collective operation
type; performing, by each of the nodes in the operational
group, the selected optimized collective operation; determin-
ing, by one or more of the nodes in the operational group,
whether a resource needed by the one or more nodes to
perform the collective operation is not available; if a resource
needed by the one or more nodes to perform the collective
operation is not available: notifying, by one or more of the
nodes in the operational group, the other nodes that the
resource is not available; selecting, by each of the nodes inthe
operational group from the list of optimized collective opera-
tions, a next optimized collective operation; and performing,
by each of the nodes in the operational group, the next opti-
mized collective operation.

In the example of FIG. 1, only one of the compute nodes is
illustrated as having a collective operations optimization
module installed upon it. This is for ease of explanation and
not for limitation. In fact, in the example of FIG. 1 a collective
operations optimization module is installed on each of the
compute nodes of the distributed processing system.

In addition to compute nodes, the parallel computer (100)
includes input/output (‘1/0’) nodes (110, 114) coupled to
compute nodes (102) through the global combining network
(106). The compute nodes in the parallel computer (100) are
partitioned into processing sets such that each compute node
in a processing set is connected for data communications to
the same [/O node. Each processing set, therefore, is com-
posed of one I/O node and a subset of compute nodes (102).
The ratio between the number of compute nodes to the num-
ber of /O nodes in the entire system typically depends on the
hardware configuration for the parallel computer. For
example, in some configurations, each processing set may be
composed of eight compute nodes and one /O node. In some
other configurations, each processing set may be composed of
sixty-four compute nodes and one I/O node. Such example
are for explanation only, however, and not for limitation. Each
1/0 nodes provide I/O services between compute nodes (102)
of’its processing set and a set of /O devices. In the example of
FIG. 1, the I/O nodes (110, 114) are connected for data
communications [/O devices (118, 120, 122) through local
area network (‘LAN’) (130) implemented using high-speed
Ethernet.

The parallel computer (100) of FIG. 1 also includes a
service node (116) coupled to the compute nodes through one
of the networks (104). Service node (116) provides services
common to pluralities of compute nodes, administering the
configuration of compute nodes, loading programs into the
compute nodes, starting program execution on the compute
nodes, retrieving results of program operations on the com-
puter nodes, and so on. Service node (116) runs a service
application (124) and communicates with users (128) through
a service application interface (126) that runs on computer
terminal (122).

The arrangement of nodes, networks, and I/O devices mak-
ing up the exemplary system illustrated in FIG. 1 are for
explanation only, not for limitation of the present invention.
Data processing systems capable of [preamble] according to
embodiments of the present invention may include additional
nodes, networks, devices, and architectures, not shown in
FIG. 1, as will occur to those of skill in the art. Although the
parallel computer (100) in the example of FIG. 1 includes
sixteen compute nodes (102), readers will note that parallel

US 9,424,087 B2

7

computers capable of optimizing collective operations by an
operational group on a parallel computer according to
embodiments of the present invention may include any num-
ber of compute nodes. In addition to Ethernet and JTAG,
networks in such data processing systems may support many
data communications protocols including for example TCP
(Transmission Control Protocol), IP (Internet Protocol), and
others as will occur to those of skill in the art. Various embodi-
ments of the present invention may be implemented on a
variety of hardware platforms in addition to those illustrated
in FIG. 1.

Optimizing collective operations by an operational group
on a parallel computer according to embodiments of the
present invention may be generally implemented on a parallel
computer that includes a plurality of compute nodes. In fact,
such computers may include thousands of such compute
nodes. Each compute node is in turn itself a kind of computer
composed of one or more computer processors (or processing
cores), its own computer memory, and its own input/output
adapters. For further explanation, therefore, FIG. 2 sets forth
a block diagram of an exemplary compute node useful in a
parallel computer capable of optimizing collective operations
by an operational group on a parallel computer according to
embodiments of the present invention. The compute node
(152) of FIG. 2 includes one or more processing cores (164)
as well as random access memory (‘RAM’) (156). The pro-
cessing cores (164) are connected to RAM (156) through a
high-speed memory bus (154) and through a bus adapter
(194) and an extension bus (168) to other components of the
compute node (152). Stored in RAM (156) is an application
program (158), a module of computer program instructions
that carries out parallel, user-level data processing using par-
allel algorithms.

Also stored in RAM (156) is a messaging module (160), a
library of computer program instructions that carry out par-
allel communications among compute nodes, including point
to point operations as well as collective operations. Applica-
tion program (158) executes collective operations by calling
software routines in the messaging module (160). A library of
parallel communications routines may be developed from
scratch for use in systems according to embodiments of the
present invention, using a traditional programming language
such as the C programming language, and using traditional
programming methods to write parallel communications rou-
tines that send and receive data among nodes on two inde-
pendent data communications networks. Alternatively, exist-
ing prior art libraries may be improved to operate according to
embodiments of the present invention. Examples of prior-art
parallel communications libraries include the ‘Message Pass-
ing Interface’ (‘MPI’) library and the ‘Parallel Virtual
Machine’ (‘PVM’) library.

Also stored in RAM (156) is a collective operations opti-
mization module (155), a module of automated computing
machinery for optimizing collective operations by an opera-
tional group on a parallel computer according to embodi-
ments of the present invention. The collective operations opti-
mization module is a module of automated computing
machinery capable of receiving, by each of the nodes in the
operational group, an instruction to perform a collective
operation type; selecting, by each of the nodes in the opera-
tional group from a list of optimized collective operations, an
optimized collective operation for the collective operation
type; performing, by each of the nodes in the operational
group, the selected optimized collective operation; determin-
ing, by one or more of the nodes in the operational group,
whether a resource needed by the one or more nodes to
perform the collective operation is not available; if a resource

30

35

40

45

55

8

needed by the one or more nodes to perform the collective
operation is not available: notifying, by one or more of the
nodes in the operational group, the other nodes that the
resource is not available; selecting, by each of the nodes inthe
operational group from the list of optimized collective opera-
tions, a next optimized collective operation; and performing,
by each of the nodes in the operational group, the next opti-
mized collective operation.

The collective operations optimization module (155) of
FIG. 2 is illustrated in RAM. This is for example and not for
limitation. In fact, collective operations optimization mod-
ules (155) according to embodiments of the present invention
may be implemented in hardware, software, or a combination
of software and hardware.

Also stored in RAM (156) is an operating system (162), a
module of computer program instructions and routines for an
application program’s access to other resources of the com-
pute node. It is typical for an application program and parallel
communications library in a compute node of a parallel com-
puter to run a single thread of execution with no user login and
no security issues because the thread is entitled to complete
access to all resources of the node. The quantity and com-
plexity of tasks to be performed by an operating system on a
compute node in a parallel computer therefore are smaller and
less complex than those of an operating system on a serial
computer with many threads running simultaneously. In addi-
tion, there is no video I/O on the compute node (152) of FIG.
2, another factor that decreases the demands on the operating
system. The operating system may therefore be quite light-
weight by comparison with operating systems of general
purpose computers, a pared down version as it were, or an
operating system developed specifically for operations on a
particular parallel computer. Operating systems that may use-
fully be improved, simplified, for use in a compute node
include UNIX™, Linux™, Microsoft XP™, AIX™, [BM’s
15/0S™ and others as will occur to those of skill in the art.

The exemplary compute node (152) of FIG. 2 includes
several communications adapters (172, 176, 180, 188) for
implementing data communications with other nodes of a
parallel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as Universal Serial Bus (‘USB’), through data
communications networks such as IP networks, and in other
ways as will occurto those of skill in the art. Communications
adapters implement the hardware level of data communica-
tions through which one computer sends data communica-
tions to another computer, directly or through a network.
Examples of communications adapters useful in systems that
[preamble] according to embodiments of the present inven-
tion include modems for wired communications, Ethernet
(IEEE 802.3) adapters for wired network communications,
and 802.11b adapters for wireless network communications.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter (172) that couples
example compute node (152) for data communications to a
Gigabit Ethernet (174). Gigabit Ethernet is a network trans-
mission standard, defined in the IEEE 802.3 standard, that
provides a data rate of 1 billion bits per second (one gigabit).
Gigabit Ethernet is a variant of Ethernet that operates over
multimode fiber optic cable, single mode fiber optic cable, or
unshielded twisted pair.

The data communications adapters in the example of FIG.
2 include a JTAG Slave circuit (176) that couples example
compute node (152) for data communications to a JTAG
Master circuit (178). JTAG is the usual name used for the
IEEE 1149.1 standard entitled Standard Test Access Port and
Boundary-Scan Architecture for test access ports used for

US 9,424,087 B2

9

testing printed circuit boards using boundary scan. JTAG is so
widely adapted that, at this time, boundary scan is more or
less synonymous with JTAG. JTAG is used not only for
printed circuit boards, but also for conducting boundary scans
of integrated circuits, and is also useful as a mechanism for
debugging embedded systems, providing a convenient “back
door” into the system. The example compute node of FIG. 2
may be all three of these: It typically includes one or more
integrated circuits installed on a printed circuit board and may
be implemented as an embedded system having its own pro-
cessor, its own memory, and its own [/O capability. JTAG
boundary scans through JTAG Slave (176) may efficiently
configure processor registers and memory in compute node
(152) for use in [preamble] according to embodiments of the
present invention.

The data communications adapters in the example of FIG.
2 includes a Point To Point Adapter (180) that couples
example compute node (152) for data communications to a
network (108) that is optimal for point to point message
passing operations such as, for example, a network config-
ured as a three-dimensional torus or mesh. Point To Point
Adapter (180) provides data communications in six direc-
tions on three communications axes, X, v, and z, through six
bidirectional links: +x (181), —-x (182), +y (183), -y (184), +z
(185), and -z (186).

The data communications adapters in the example of FIG.
2 includes a Global Combining Network Adapter (188) that
couples example compute node (152) for data communica-
tions to a network (106) that is optimal for collective message
passing operations on a global combining network config-
ured, for example, as a binary tree. The Global Combining
Network Adapter (188) provides data communications
through three bidirectional links: two to children nodes (190)
and one to a parent node (192).

Example compute node (152) includes two arithmetic
logic units (‘ALUs’). ALU (166) is a component of each
processing core (164), and a separate ALU (170) is dedicated
to the exclusive use of Global Combining Network Adapter
(188) for use in performing the arithmetic and logical func-
tions of reduction operations. Computer program instructions
of a reduction routine in parallel communications library
(160) may latch an instruction for an arithmetic or logical
function into instruction register (169). When the arithmetic
or logical function of a reduction operation is a ‘sum’ or a
‘logical or,” for example, Global Combining Network Adapter
(188) may execute the arithmetic or logical operation by use
of ALU (166) in processor (164) or, typically much faster, by
use dedicated ALU (170).

The example compute node (152) of FIG. 2 includes a
direct memory access (‘DMA’) controller (195), which is
computer hardware for direct memory access and a DMA
engine (197), which is computer software for direct memory
access. The DMA engine (197) of FIG. 2 is typically stored in
computer memory of the DMA controller (195). Direct
memory access includes reading and writing to memory of
compute nodes with reduced operational burden on the cen-
tral processing units (164). A DMA transfer essentially copies
a block of memory from one location to another, typically
from one compute node to another. While the CPU may
initiate the DMA transfer, the CPU does not execute it.

For further explanation, FIG. 3A illustrates an exemplary
Point To Point Adapter (180) useful in systems capable of
optimizing collective operations by an operational group on a
parallel computer according to embodiments of the present
invention. Point To Point Adapter (180) is designed for use in
a data communications network optimized for point to point
operations, a network that organizes compute nodes in a

15

20

25

30

40

45

55

60

10

three-dimensional torus or mesh. Point To Point Adapter
(180) in the example of FIG. 3A provides data communica-
tion along an x-axis through four unidirectional data commu-
nications links, to and from the next node in the —x direction
(182) and to and from the next node in the +x direction (181).
Point To Point Adapter (180) also provides data communica-
tion along a y-axis through four unidirectional data commu-
nications links, to and from the next node in the —y direction
(184) and to and from the next node in the +y direction (183).
Point To Point Adapter (180) in FIG. 3A also provides data
communication along a z-axis through four unidirectional
data communications links, to and from the next node in the
-z direction (186) and to and from the next node in the +z
direction (185).

For further explanation, FIG. 3B illustrates an exemplary
Global Combining Network Adapter (188) useful in systems
capable of optimizing collective operations by an operational
group on a parallel computer according to embodiments of
the present invention. Global Combining Network Adapter
(188)is designed for use in a network optimized for collective
operations, a network that organizes compute nodes of a
parallel computer in a binary tree. Global Combining Net-
work Adapter (188) in the example of FIG. 3B provides data
communication to and from two children nodes through four
unidirectional data communications links (190). Global
Combining Network Adapter (188) also provides data com-
munication to and from a parent node through two unidirec-
tional data communications links (192).

For further explanation, FIG. 4 sets forth a line drawing
illustrating an exemplary data communications network
(108) optimized for point to point operations useful in sys-
tems capable of optimizing collective operations by an opera-
tional group on a parallel computer in accordance with
embodiments of the present invention. In the example of FIG.
4, dots represent compute nodes (102) of a parallel computer,
and the dotted lines between the dots represent data commu-
nications links (103) between compute nodes. The data com-
munications links are implemented with point to point data
communications adapters similar to the one illustrated for
examplein FIG. 3A, with data communications links on three
axes, X, y, and z, and to and fro in six directions +x (181), -x
(182), +y (183), —y (184), +z (185), and -z (186). The links
and compute nodes are organized by this data communica-
tions network optimized for point to point operations into a
three dimensional mesh (105). The mesh (105) has wrap-
around links on each axis that connect the outermost compute
nodes in the mesh (105) on opposite sides of the mesh (105).
These wrap-around links form part of a torus (107). Each
compute node in the torus has a location in the torus that is
uniquely specified by a set of X, y, z coordinates. Readers will
note that the wrap-around links in the y and z directions have
been omitted for clarity, but are configured in a similar man-
ner to the wrap-around link illustrated in the x direction. For
clarity of explanation, the data communications network of
FIG. 4 is illustrated with only 27 compute nodes, but readers
will recognize that a data communications network optimized
for point to point operations for use in [preamble] in accor-
dance with embodiments of the present invention may con-
tain only a few compute nodes or may contain thousands of
compute nodes.

For further explanation, FIG. 5 sets forth a line drawing
illustrating an exemplary data communications network
(106) optimized for collective operations useful in systems
capable of optimizing collective operations by an operational
group on a parallel computer in accordance with embodi-
ments of the present invention. The example data communi-
cations network of FIG. 5 includes data communications

US 9,424,087 B2

11

links connected to the compute nodes so as to organize the
compute nodes as a tree. In the example of FIG. 5, dots
represent compute nodes (102) of a parallel computer, and the
dotted lines (103) between the dots represent data communi-
cations links between compute nodes. The data communica-
tions links are implemented with global combining network
adapters similar to the one illustrated for example in FIG. 3B,
with each node typically providing data communications to
and from two children nodes and data communications to and
from a parent node, with some exceptions. Nodes in a binary
tree (106) may be characterized as a physical root node (202),
branch nodes (204), and leafnodes (206). The root node (202)
has two children but no parent. The leaf nodes (206) each has
a parent, but leaf nodes have no children. The branch nodes
(204) each has both a parent and two children. The links and
compute nodes are thereby organized by this data communi-
cations network optimized for collective operations into a
binary tree (106). For clarity of explanation, the data commu-
nications network of FIG. 5 is illustrated with only 31 com-
pute nodes, but readers will recognize that a data communi-
cations network optimized for collective operations for use in
systems for [preamble] in accordance with embodiments of
the present invention may contain only a few compute nodes
or may contain thousands of compute nodes.

In the example of FIG. 5, each node in the tree is assigned
a unit identifier referred to as a ‘rank’ (250). A node’s rank
uniquely identifies the node’s location in the tree network for
use in both point to point and collective operations in the tree
network. The ranks in this example are assigned as integers
beginning with 0 assigned to the root node (202), 1 assigned
to the first node in the second layer of the tree, 2 assigned to
the second node in the second layer of the tree, 3 assigned to
the first node in the third layer of the tree, 4 assigned to the
second node in the third layer of the tree, and so on. For ease
ofillustration, only the ranks of the first three layers of the tree
are shown here, but all compute nodes in the tree network are
assigned a unique rank.

For further explanation, FIG. 6 sets forth a further exem-
plary distributed computing system for optimizing collective
operations by an operational group on a parallel computer
according to embodiments of the present invention in which
the distributed computing system is implemented as a hybrid
computing environment. A ‘hybrid computing environment,’
as the term is used in this specification, is a computing envi-
ronment in that it includes computer processors operatively
coupled to computer memory so as to implement data pro-
cessing in the form of execution of computer program instruc-
tions stored in the memory and executed on the processors.
The hybrid computing environment (600) of FIG. 6 includes
one compute node (603) that represents a small, separate
hybrid computing environment which, when taken with other
similar compute nodes (602), together make up a larger
hybrid computing environment.

The example compute node (603) of FIG. 6 may carry out
principal user-level computer program execution, accepting
administrative services, such as initial program loads and the
like, from a service application executing on a service node
connected to the compute node (603) through a data commu-
nications network. The example compute node may also be
coupled for data communications to one or more input/output
(I/O) nodes that enable the compute node to gain access to
data storage and other 1/O functionality. The /O nodes and
service node may be connected to the example compute node
(603), to other compute nodes (602) in the larger hybrid
computing environment, and to I/O devices, through a local
area network (‘LAN’) implemented using high-speed Ether-
net or a data communications fabric of another fabric type as

10

15

20

25

30

35

40

45

50

55

60

65

12

will occur to those of skill in the art. I/O devices useful in a
larger hybrid computing environment that includes the com-
pute node (603) may include non-volatile memory for the
computing environment in the form of data storage device, an
output device for the hybrid computing environment in the
form of printer, and a user I/O device in the form of computer
terminal that executes a service application interface that
provides to a user an interface for configuring compute nodes
in the hybrid computing environment and initiating execution
by the compute nodes of principal user-level computer pro-
gram instructions.

The compute node (603) in the example of FIG. 6 is illus-
trated in an expanded view to aid a more detailed explanation
of'a hybrid computing environment (600) that may be com-
bined with other hybrid computing environments, such as the
other compute nodes (602), to form a larger hybrid computing
environment. The compute node (603) in the example of FIG.
6 includes a host computer (610). A host computer (610) is a
‘host’ in the sense that it is the host computer that carries out
interface functions between a compute node and other com-
ponents of the hybrid computing environment external to any
particular compute node. That is, it is the host computer that
executes initial boot procedures, power on self tests, basic [/O
functions, accepts user-level program loads from service
nodes, and so on.

The host computer (610) in the example of FIG. 6 includes
a computer processor (652) operatively coupled to computer
memory, Random Access Memory (‘RAM”) (642), through a
high speed memory bus (653). The processor (652) in each
host computer (610) has a set of architectural registers (654)
that defines the host computer architecture.

The example compute node (603) of FIG. 6 also includes
one or more accelerators (604, 605). An accelerator (604) is
an ‘accelerator’ in that each accelerator has an accelerator
architecture that is optimized, with respect to the host com-
puter architecture, for speed of execution of a particular class
of computing functions. Such accelerated computing func-
tions include, for example, vector processing, floating point
operations, and others as will occur to those of skill in the art.
Each accelerator (604, 605) in the example of FIG. 6 includes
a computer processor (648) operatively coupled to RAM
(640) through a high speed memory bus (651). Stored in
RAM (640, 642) of the host computer and the accelerators
(604, 605) is an operating system (645). Operating systems
useful in host computers and accelerators of hybrid comput-
ing environments according to embodiments of the present
invention include UNIX™, Linux™, Microsoft XPT™,
Microsoft Vista™, Microsoft NT™, ATX™, [BM’s i5/0S™,
and others as will occur to those of skill in the art. There is no
requirement that the operating system in the host computers
should be the same operating system used on the accelerators.

The processor (648) of each accelerator (604, 605) has a set
of architectural registers (650) that defines the accelerator
architecture. The architectural registers (650) of the processor
(648) of each accelerator are different from the architectural
registers (654) of the processor (652) in the host computer
(610). The architectural registers are registers that are acces-
sible by computer program instructions that execute on each
architecture, registers such as an instruction register, a pro-
gram counter, memory index registers, stack pointers, and the
like. With differing architectures, it would be uncommon,
although possible, for a host computer and an accelerator to
support the same instruction sets. As such, computer program
instructions compiled for execution on the processor (648) of
an accelerator (604) generally would not be expected to
execute natively on the processor (652) of the host computer
(610) and vice versa. Moreover, because of the typical differ-

US 9,424,087 B2

13

ences in hardware architectures between host processors and
accelerators, computer program instructions compiled for
execution on the processor (652) of a host computer (610)
generally would not be expected to execute natively on the
processor (648) of an accelerator (604) even if the accelerator
supported the instruction set of the host. The accelerator
architecture in example of FIG. 6 is optimized, with respectto
the host computer architecture, for speed of execution of a
particular class of computing functions. That is, for the func-
tion or functions for which the accelerator is optimized,
execution of those functions will proceed faster on the accel-
erator than if they were executed on the processor of the host
computer.

Examples of hybrid computing environments include a
data processing system that in turn includes one or more host
computers, each having an x86 processor, and accelerators
whose architectural registers implement the PowerPC
instruction set. Computer program instructions compiled for
execution on the x86 processors in the host computers cannot
be executed natively by the PowerPC processors in the accel-
erators. Readers will recognize in addition that some of the
example hybrid computing environments described in this
specification are based upon the Los Alamos National Labo-
ratory (‘LANL’) supercomputer architecture developed in the
LANL Roadrunner project (named for the state bird of New
Mexico), the supercomputer architecture that famously first
generated a ‘petaflop,” a million billion floating point opera-
tions per second. The LANL supercomputer architecture
includes many host computers with dual-core AMD Opteron
processors coupled to many accelerators with IBM Cell pro-
cessors, the Opteron processors and the Cell processors hav-
ing different architectures.

In the example of FIG. 6, the host computer (610) and the
accelerators (604, 605) are adapted to one another for data
communications by a system level message passing module
(‘SLMPM”) (646) and two data communications fabrics
(628, 630) of at least two different fabric types. A data com-
munications fabric (628, 630) is a configuration of data com-
munications hardware and software that implements a data
communications coupling between a host computer and an
accelerator. Examples of data communications fabric types
include Peripheral Component Interconnect (‘PCI’), PCI
express (‘PCle’), Ethernet, Infiniband, Fibre Channel, Small
Computer System Interface (‘SCSI’), External Serial
Advanced Technology Attachment (‘eSATA’), Universal
Serial Bus (‘USB’), and so on as will occur to those of skill in
the art. In the example of FIG. 6, the host computer (610) and
the accelerators (604, 605) are adapted to one another for data
communications by a PCle fabric (630) through PCle com-
munications adapters (660) and an Ethernet fabric (628)
through Ethernet communications adapters (661). The use of
PCle and Ethernet is for explanation, not for limitation of the
invention. Readers of skill in the art will immediately recog-
nize that hybrid computing environments according to
embodiments of the present invention may include fabrics of
other fabric types such as, for example, PCI, Infiniband, Fibre
Channel, SCSI, eSATA, USB, and so on.

An SLMPM (646) is a module or library of computer
program instructions that exposes an application program-
ming interface (‘API”) to user-level applications for carrying
out message-based data communications between the host
computer (610) and the accelerator (604, 605). Examples of
message-based data communications libraries that may be
improved for use as an SLMPM according to embodiments of
the present invention include:

20

40

45

14

the Message Passing Interface or ‘MPI,” an industry stan-
dard interface in two versions, first presented at Super-
computing 1994, not sanctioned by any major standards
body,

the Data Communication and Synchronization interface

(‘DACS’) of the LANL supercomputer,

the POSIX Threads library (‘Pthreads”), an IEEE standard

for distributed, multithreaded processing,

the Open Multi-Processing interface (‘OpenMP’), an

industry-sanctioned specification for parallel program-
ming, and

other libraries that will occur to those of skill in the art.

In this example, to support message-based data communi-
cations between the host computer (610) and the accelerator
(604), both the host computer (610) and the accelerator (604)
have an SLMPM (646) so that message-based communica-
tions can both originate and be received on both sides of any
coupling for data communications.

The SLMPM (646) in this example operates generally for
data processing in a hybrid computing environment (600) by
monitoring data communications performance for a plurality
of data communications modes between the host computer
(610) and the accelerators (604, 605), receiving a request
(668) to transmit data according to a data communications
mode from the host computer to an accelerator, determining
whether to transmit the data according to the requested data
communications mode, and if the data is not to be transmitted
according to the requested data communications mode:
selecting another data communications mode and transmit-
ting the data according to the selected data communications
mode. In the example of FIG. 6, the monitored performance is
illustrated as monitored performance data (674) stored by the
SLMPM (646) in RAM (642) of the host computer (610)
during operation of the compute node (603).

A data communications mode specifies a data communi-
cations fabric type, a data communications link, and a data
communications protocol (678). A data communications link
(656) is data communications connection between a host
computer and an accelerator. In the example of FIG. 6, a link
(656) between the host computer (610) and the accelerator
(604) may include the PCle connection (638) or the Ethernet
connection (631, 632) through the Ethernet network (606). A
link (656) between the host computer (610) and the accelera-
tor (605) in the example of FIG. 6, may include the PCle
connection (636) or the Ethernet connection (631, 634)
through the Ethernet network (606). Although only one link
for each fabric type is illustrated between the host computer
and the accelerator in the example of FIG. 6, readers of skill
in the art will immediately recognize that there may any
number of links for each fabric type.

A data communications protocol is a set of standard rules
for data representation, signaling, authentication and error
detection required to send information from a host computer
(610) to an accelerator (604). In the example of FIG. 6, the
SLMPM (646) may select one of several protocols (678) for
data communications between the host computer (610) and
the accelerator. Examples of such protocols (678) include
shared memory transfers (‘SMT”) (680) executed with a send
and receive operations (681), and direct memory access
(‘DMA’) (682) executed with PUT and GET operations
(683).

Shared memory transfer is a data communications protocol
for passing data between a host computer and an accelerator
into shared memory space (658) allocated for such a purpose
such that only one instance of the data resides in memory at
any time. Consider the following as an example shared
memory transfer between the host computer (610) and the

US 9,424,087 B2

15

accelerator (604) of FIG. 6. An application (669) requests
(668) a transmission of data (676) from the host computer
(610) to the accelerator (604) in accordance with the SMT
(680) protocol. Such a request (668) may include a memory
address allocated for such shared memory. In this example,
the shared memory segment (658) is illustrated in a memory
location on the accelerator (604), but readers will recognize
that shared memory segments may be located on the accel-
erator (604), on the host computer (610), on both the host
computer and the accelerator, or even off the local compute
node (603) entirely—so long as the segment is accessible as
needed by the host and the accelerator. To carry out a shared
memory transfer, the SLMPM (646) on the host computer
(610) establishes a data communications connection with the
SLMPM (646) executing on the accelerator (604) by a hand-
shaking procedure similar to that in the TCP protocol. The
SLMPM (646) then creates a message (670) that includes a
header and a payload data and inserts the message into a
message transmit queue for a particular link of a particular
fabric. In creating the message, the SLMPM inserts, in the
header of the message, an identification of the accelerator and
an identification of a process executing on the accelerator.
The SLMPM also inserts the memory address from the
request (668) into the message, either in the header or as part
of'the payload data. The SLMPM also inserts the data (676) to
be transmitted in the message (670) as part of the message
payload data. The message is then transmitted by a commu-
nications adapter (660, 661) across a fabric (628, 630) to the
SLMPM executing on the accelerator (604) where the
SLMPM stores the payload data, the data (676) that was
transmitted, in shared memory space (658) in RAM (640) in
accordance with the memory address in the message.

Direct memory access (‘DMA’) is a data communications
protocol for passing data between a host computer and an
accelerator with reduced operational burden on the computer
processor (652). A DMA transfer essentially effects a copy of
a block of memory from one location to another, typically
from a host computer to an accelerator or vice versa. Either or
both a host computer and accelerator may include DMA
controller and DMA engine, an aggregation of computer
hardware and software for direct memory access. Direct
memory access includes reading and writing to memory of
accelerators and host computers with reduced operational
burden on their processors. A DMA engine of an accelerator,
for example, may write to or read from memory allocated for
DMA purposes, while the processor of the accelerator
executes computer program instructions, or otherwise con-
tinues to operate. That is, a computer processor may issue an
instruction to execute a DMA transfer, but the DMA engine,
not the processor, carries out the transfer.

In the example of FIG. 6, only the accelerator (604)
includes a DMA controller (685) and DMA engine (684)
while the host computer does not. In this embodiment the
processor (652) on the host computer initiates a DMA trans-
fer of data from the host to the accelerator by sending a
message according to the SMT protocol to the accelerator,
instructing the accelerator to perform a remote ‘GET” opera-
tion. The configuration illustrated in the example of FIG. 6 in
which the accelerator (604) is the only device containing a
DMA engine is for explanation only, not for limitation. Read-
ers of skill in the art will immediately recognize that in many
embodiments, both a host computer and an accelerator may
include a DMA controller and DMA engine, while in yet
other embodiments only a host computer includes a DMA
controller and DMA engine.

To implement a DMA protocol in the hybrid computing
environment of FIG. 6 some memory region is allocated for

10

15

20

25

30

35

40

45

50

55

60

65

16

access by the DMA engine. Allocating such memory may be
carried out independently from other accelerators or host
computers, or may be initiated by and completed in coopera-
tion with another accelerator or host computer. Shared
memory regions, allocated according to the SMA protocol,
for example, may be memory regions made available to a
DMA engine. That is, the initial setup and implementation of
DMA data communications in the hybrid computing environ-
ment (600) of FIG. 6 may be carried out, at least in part,
through shared memory transfers or another out-of-band data
communications protocol, out-of-band with respect to a
DMA engine. Allocation of memory to implement DMA
transfers is relatively high in latency, but once allocated, the
DMA protocol provides for high bandwidth data communi-
cations that requires less processor utilization than many
other data communications protocols.

A direct ‘PUT” operation is a mode of transmitting data
from a DMA engine on an origin device to a DMA engine on
a target device. A direct ‘PUT’ operation allows data to be
transmitted and stored on the target device with little involve-
ment from the target device’s processor. To effect minimal
involvement from the target device’s processor in the direct
‘PUT’ operation, the origin DMA engine transfers the data to
be stored on the target device along with a specific identifi-
cation of a storage location on the target device. The origin
DMA knows the specific storage location on the target device
because the specific storage location for storing the data on
the target device has been previously provided by the target
DMA engine to the origin DMA engine.

A remote ‘GET’ operation, sometimes denominated an
‘rGET, is another mode of transmitting data from a DMA
engine on an origin device to a DMA engine on a target
device. A remote ‘GET’ operation allows data to be transmit-
ted and stored on the target device with little involvement
from the origin device’s processor. To effect minimal involve-
ment from the origin device’s processor in the remote ‘GET’
operation, the origin DMA engine stores the data in an storage
location accessible by the target DMA engine, notifies the
target DMA engine, directly or out-of-band through a shared
memory transmission, of the storage location and the size of
the data ready to be transmitted, and the target DMA engine
retrieves the data from storage location.

Monitoring data communications performance for a plu-
rality of data communications modes may include monitoring
a number of requests (668) in a message transmit request
queue (662-165) for a data communications link (656). In the
example of FIG. 6, each message transmit request queue
(662-165) is associated with one particular data communica-
tions link (656). Each queue (662-165) includes entries for
messages (670) that include data (676) to be transmitted by
the communications adapters (660, 661) along a data com-
munications link (656) associated with queue.

Monitoring data communications performance for a plu-
rality of data communications modes may also include moni-
toring utilization of a shared memory space (658). In the
example of FI1G. 6, shared memory space (658) is allocated in
RAM (640) of the accelerator. Utilization is the proportion of
the allocated shared memory space to which data has been
stored for sending to a target device and has not yet been read
or received by the target device, monitored by tracking the
writes and reads to and from the allocated shared memory. In
the hybrid computing environment (600) of FIG. 6, shared
memory space, any memory in fact, is limited. As such, a
shared memory space (658) may be filled during execution of
an application program (669) such that transmission of data

US 9,424,087 B2

17

from the host computer (610) to an accelerator may be
slowed, or even stopped, due to space limitations in the shared
memory space.

In some embodiments of the present invention, the hybrid
computing environment (600) of FIG. 6 may be configured to
operate as a parallel computing environment in which two or
more instances the application program (669) executes on
two or more host computers (610) in the parallel computing
environment. In such embodiments, monitoring data commu-
nications performance across data communications modes
may also include aggregating data communications perfor-
mance information (674) across a plurality of instances of the
application program (669) executing on two or more host
computers in a parallel computing environment. The aggre-
gated performance information (674) may be used to calcu-
late average communications latencies for data communica-
tions modes, average number of requests in data
communications links of a particular fabric type, average
shared memory utilization among the plurality of host com-
puters and accelerators in the parallel computing environ-
ment, and so on as will occur to those of skill in the art. Any
combination of such measures may be used by the SLMPM
for both determining whether to transmit the data according
to requested data communications mode and selecting
another data communications mode for transmitting the data
if the data is not to be transmitted according to the requested
data communications mode.

The SLMPM (646) of FIG. 6 receives, from an application
program (669) on the host computer (610), a request (668) to
transmit data (676) according to a data communications mode
from the host computer (610) to the accelerator (604). Such
data (676) may include computer program instructions com-
piled for execution by the accelerator (604), such as an
executable file of an accelerator application program, work
piece data for an accelerator application program, files nec-
essary for execution of an accelerator application program,
such as libraries, databases, drivers, and the like. Receiving a
request (668) to transmit data (676) according to a data com-
munications mode may include receiving a request to trans-
mit data by a specified fabric type, receiving a request to
transmit data through a specified data communications link
from the host computer to the accelerator, or receiving a
request to transmit data from the host computer to the accel-
erator according to a protocol.

A request (668) to transmit data (676) according to a data
communications mode may be implemented as a user-level
application function call through an API to the SLMPM
(646), a call that expressly specifies a data communications
mode according to protocol, fabric type, and link. A request
implemented as a function call may specify a protocol
according to the operation of the function call itself. A dac-
s_put() function call, for example, may represent a call
through an API exposed by an SLMPM implemented as a
DACS library to transmit data in the default mode of a DMA
‘PUT” operation. Such a call, from the perspective of the
calling application and the programmer who wrote the calling
application, represents a request to the SLMPM library to
transmit data according to the default mode, known to the
programmer to be default mode associated with the express
API call. The called function, in this example dacs_put(),
may be coded in embodiments with multiple fabric types,
protocols, and links, to make its own determination whether
to transmit the data according to the requested data commu-
nications mode, that is, according to the default mode of the
called function. In a further example, a dacs_send() instruc-
tion may represent a call through an API exposed by an
SLMPM implemented as a DACS library to transmit data in

10

15

20

25

30

35

40

45

50

55

60

65

18

the default mode of an SMT ‘send’ operation, where the
called function dacs_send() is again coded in embodiments
with multiple fabric types, protocols, and links, to make its
own determination whether to transmit the data according to
the requested mode.

An identification of a particular accelerator in a function
call may effectively specify a fabric type. Such a function call
may include as a call parameters an identification of a par-
ticular accelerator. An identification of a particular accelera-
tor by use of a PCle 1D, for example, effectively specifies a
PCl{fabric type. In another, similar, example, an identification
of a particular accelerator by use of a media access control
(*‘MAC’) address of an Ethernet adapter effectively specifies
the Ethernet fabric type. Instead of implementing the accel-
erator ID of the function call from an application executing on
the host in such a way as to specify a fabric type, the function
call may only include a globally unique identification of the
particular accelerator as a parameter of the call, thereby speci-
fying only a link from the host computer to the accelerator,
not a fabric type. In this case, the function called may imple-
ment a default fabric type for use with a particular protocol. If
the function called in the SLMPM is configured with PCle as
a default fabric type for use with the DMA protocol, for
example, and the SLMPM receives a request to transmit data
to the accelerator (604) according to the DMA protocol, a
DMA PUT or DMA remote GET operation, the function
called explicitly specifies the default fabric type for DMA, the
PCle fabric type.

In hybrid computing environments in which only one link
of each fabric type adapts a single host computer to a single
accelerator, the identification of a particular accelerator in a
parameter of a function call, may also effectively specity a
link. In hybrid computing environments where more than one
link of each fabric type adapts a host computer and an accel-
erator, such as two PCle links connecting the host computer
(610) to the accelerator (604), the SLMPM function called
may implement a default link for the accelerator identified in
the parameter of the function call for the fabric type specified
by the identification of the accelerator.

The SLMPM (646) in the example of FIG. 6 also deter-
mines, in dependence upon the monitored performance (674),
whether to transmit the data (676) according to the requested
data communications mode. Determining whether to transmit
the data (676) according to the requested data communica-
tions mode may include determining whether to transmit data
by arequested fabric type, whether to transmit data through a
requested data communications link, or whether to transmit
data according to a requested protocol.

In hybrid computing environments according to embodi-
ments of the present invention, where monitoring data com-
munications performance across data communications
modes includes monitoring a number of requests in a message
transmit request queue (662-165) for a data communications
link, determining whether to transmit the data (676) accord-
ing to the requested data communications mode may be car-
ried out by determining whether the number of requests in the
message transmit request queue exceeds a predetermined
threshold. In hybrid computing environments according to
embodiments of the present invention, where monitoring data
communications performance for a plurality of data commu-
nications modes includes monitoring utilization of a shared
memory space, determining whether to transmit the data
(676) according to the requested data communications mode
may be carried out by determining whether the utilization of
the shared memory space exceeds a predetermined threshold.

If the data is not to be transmitted according to the
requested data communications mode, the SLMPM (646)

US 9,424,087 B2

19

selects, in dependence upon the monitored performance,
another data communications mode for transmitting the data
and transmits the data (676) according to the selected data
communications mode. Selecting another data communica-
tions mode for transmitting the data may include selecting, in
dependence upon the monitored performance, another data
communications fabric type by which to transmit the data,
selecting a data communications link through which to trans-
mit the data, and selecting another data communications pro-
tocol. Consider as an example, that the requested data com-
munications mode is a DMA transmission using a PUT
operation through link (638) of the PCle fabric (630) to the
accelerator (604). If the monitored data performance (674)
indicates that the number of requests in transmit message
request queue (662) associated with the link (638) exceeds a
predetermined threshold, the SLMPM may select another
fabric type, the Ethernet fabric (628), and link (631, 632)
through which to transmit the data (676). Also consider that
the monitored performance (676) indicates that current utili-
zation of the shared memory space (658) is less than a prede-
termined threshold while the number of outstanding DMA
transmissions in the queue (662) exceeds a predetermined
threshold. In such a case, the SLMPM (646) may also select
another protocol, such as a shared memory transfer, by which
to transmit the data (674).

Selecting, by the SLMPM, another data communications
mode for transmitting the data (672) may also include select-
ing a data communications protocol (678) in dependence
upon data communications message size (672). Selecting a
data communications protocol (678) in dependence upon data
communications message size (672) may be carried out by
determining whether a size of a message exceeds a predeter-
mined threshold. For larger messages (670), the DMA proto-
col may be a preferred protocol as processor utilization in
making a DMA transfer of a larger message (670) is typically
less than the processor utilization in making a shared memory
transfer of a message of the same size.

As mentioned above, the SLMPM may also transmit the
data according to the selected data communications mode.
Transmit the data according to the selected data communica-
tions mode may include transmitting the data by the selected
data communications fabric type, transmitting the data
through the selected data communications link, or transmit-
ting the data according to the selected protocol. The SLMPM
(646) may effect a transmission of the data according to the
selected data communications mode by instructing, through a
device driver, the communications adapter for the data com-
munications fabric type of the selected data communications
mode to transmit the message (670) according to a protocol of
the selected data communications mode, where the message
includes in a message header, an identification of the accel-
erator, and in the message payload, the data (676) to be
transmitted.

In the example of FIG. 6 stored in RAM (640) on the
accelerator (604) and also stored in RAM on the host com-
puter (603) is a collective operations optimization module
(155), a module of automated computing machinery for opti-
mizing collective operations by an operational group on a
parallel computer according to embodiments of the present
invention. In the example of FIG. 6, the collective operations
optimization module is stored in RAM on both the accelerator
and the host computer to illustrate that such a module accord-
ing to embodiments of the present invention may be stored on
and executed by either the accelerator, the host computer, or
both the accelerator and the host computer as will occur to
those of skill in the art. The collective operations optimization
module is a module of automated computing machinery

10

15

20

25

30

35

40

45

50

55

60

65

20

capable of receiving, by each of the nodes in the operational
group, an instruction to perform a collective operation type;
selecting, by each of the nodes in the operational group from
a list of optimized collective operations, an optimized collec-
tive operation for the collective operation type; performing,
by each of the nodes in the operational group, the selected
optimized collective operation; determining, by one or more
of the nodes in the operational group, whether a resource
needed by the one or more nodes to perform the collective
operation is not available; if a resource needed by the one or
more nodes to perform the collective operation is not avail-
able: notifying, by one or more of the nodes in the operational
group, the other nodes that the resource is not available;
selecting, by each of the nodes in the operational group from
the list of optimized collective operations, a next optimized
collective operation; and performing, by each of the nodes in
the operational group, the next optimized collective opera-
tion.

For further explanation, FIG. 7 sets forth an exemplary
method of for optimizing collective operations by an opera-
tional group on a parallel computer according to embodi-
ments of the present invention. The method of FIG. 7 may be
carried out in a distributed computing system similar to the
example distributed computing systems described above: the
example parallel computers of FIGS. 1-5, the example hybrid
computing environment of FIG. 6, and others as will occur to
those of skill in the art. As discussed above, an operational
group in the example of FIG. 7 is implemented as a plurality
of compute nodes that will perform one or more collective
operations.

The method of FIG. 7 includes receiving (704), by each of
the nodes in the operational group, an instruction (702) to
perform a collective operation type. As mentioned above, a
collective operation is an operation, a message-passing com-
puter program instruction that is executed simultaneously,
that is, at approximately the same time, by all the compute
nodes in an operational group of compute nodes. A collective
operation type is category of collective operations. Examples
of such collective operation types include broadcast, gather,
scatter, and reduce. Within each of these types of collective
operations an operational group may be able to perform many
different versions of collective operations of that particular
collective operation type. For example, the operational group
may be able to perform many different scatter operations each
varying in the manner in which the scatter is performed, such
as for example, differing in the manner in which class routes
are used for the collective operation. Often, depending on the
geometry of the operational group, that is, the topology in
which the operational group is implemented, one or more
versions of a collective operation of a collective operation
type may be preferred over other versions.

Often the logical root of the operational group initiates a
collective operation. Receiving (704), by each of the nodes in
the operational group, an instruction (702) to perform a col-
lective operation type therefore may be carried out by receiv-
ing an instruction to perform a collective operation type from
the logical root of the operational group.

The method of FIG. 7 includes selecting (712), by each of
the nodes in the operational group from a prioritized list (708)
of optimized collective operations (708), an optimized col-
lective operation (708) for the collective operation type (710).
Selecting (712) an optimized collective operation (708) for
the collective operation type (710) may include receiving by
each node in the operational group information concerning
the geometry of the operational group and selecting a particu-
lar optimized collective operation in dependence upon the
geometry. In such cases, each compute node of the opera-

US 9,424,087 B2

21

tional group may maintain a list of identifications of collec-
tive operations by operation type that are prioritized in depen-
dence upon aspects of geometry for operational groups. Each
compute node in the example of FIG. 1 has the same infor-
mation and list and therefore selects the same optimized
collective operation.

The method of FIG. 7 also includes performing (714), by
each of the nodes in the operational group, the selected opti-
mized collective operation (708). Performing (714), by each
of the nodes in the operational group, the selected optimized
collective operation (708) may be carried by executing a
message-passing computer program instruction simulta-
neously, that is, at approximately the same time, by all the
compute nodes in the operational group.

In some cases, performing the collective operation fails.
That is, one or more of the computer nodes of the operational
nodes does not have a resource required to properly execute
the collective operation. The method of FIG. 7 therefore also
includes determining (718), by one or more ofthe nodes in the
operational group, whether a resource needed by the one or
more nodes to perform the collective operation is not avail-
able. Examples that may cause the collective operation to fail
include one or more invalid class routes, a link failure on a
link of one or more nodes, a hardware fault on one or more of
the compute nodes and others as will occur to those of skill in
the art. Determining (718), by one or more of the nodes in the
operational group, whether a resource needed by the one or
more nodes to perform the collective operation is not avail-
able may be carried out by identifying an invalid class route,
identifying a link failure on a link adjacent to the one or more
nodes, identifying a hardware failure, and identifying other
resources that are not available to one or more compute nodes
that are needed to properly perform the collective operation as
will occur to those of skill in the art.

If a resource needed by the one or more nodes to perform
the collective operation is not available, the method of FIG. 7
also includes notifying (720), by one or more of the nodes in
the operational group, the other nodes that the resource is not
available. Notifying (720), by one or more of the nodes in the
operational group, the other nodes that the resource is not
available may be carried out by sending a message from each
node that has a resource unavailable to every other node in the
operational group. Such a message contains information noti-
fying each node of the operational group that the selected
collective operation was not performed properly.

If a resource needed by the one or more nodes to perform
the collective operation is not available, the method of FIG. 7
also includes selecting (722), by each of the nodes in the
operational group from the list of optimized collective opera-
tions, a next optimized collective operation and performing
(714), by each of the nodes in the operational group, the next
optimized collective operation. Selecting (722), by each of
the nodes in the operational group from the list of optimized
collective operations, a next optimized collective operation is
typically carried out by selecting an identification of the next
most prioritized collective operation from the list. Performing
(714), by each of the nodes in the operational group, the
selected optimized collective operation (708) may carried by
executing a message-passing computer program instruction
simultaneously, that is, at approximately the same time, by all
the compute nodes in the operational group. In the method of
FIG. 7, selecting (722), by each of'the nodes in the operational
group from the list of optimized collective operations, a next
optimized collective operation and performing (714), by each
of the nodes in the operational group, the next optimized
collective operation may be repeated until a collective opera-
tion is performed correctly, until each compute node has no

20

30

35

40

45

22

more collective operations on the list, or until a threshold
number of collective operations are performed.

Often data in a source buffer is used and written over during
the execution ofa collective operation. As such, ofa collective
operation that is not performed correctly may corrupt that
data in the source buffer. For further explanation, FIG. 8 sets
forth another exemplary method of for optimizing collective
operations by an operational group on a parallel computer
according to embodiments of the present invention that pre-
serves the input values for the collective operation. The
method of FIG. 8 is similar to the method of FIG. 7 in that the
method of FIG. 8 includes receiving (704), by each of the
nodes in the operational group, an instruction to perform a
collective operation type; selecting (712), by each of the
nodes in the operational group from a list of optimized col-
lective operations, an optimized collective operation for the
collective operation type; performing (714), by each of the
nodes in the operational group, the selected optimized col-
lective operation; determining (718), by one or more of the
nodes in the operational group, whether a resource needed by
the one or more nodes to perform the collective operation is
not available; and if a resource needed by the one or more
nodes to perform the collective operation is not available,
notifying (720), by one or more of the nodes in the operational
group, the other nodes that the resource is not available;
selecting (722), by each of the nodes in the operational group
from the list of optimized collective operations, a next opti-
mized collective operation; and performing (714), by each of
the nodes in the operational group, the next optimized collec-
tive operation.

In the example of FIG. 8 the selected optimized collective
operation is an in-place operation. An in-place operation is an
operation that writes the output or interim result in one or
more memory locations of one or more of the inputs to the
operation. While in-place operations are efficient uses of
memory, the value of the input of the operation may be lost if
the operation is not performed correctly. In the example of
FIG. 8, therefore, performing (714) the selected optimized
collective operation includes copying (802) the contents of
the source buffer before performing the optimized collective
operation. A source buffer is a buffer containing the values of
the inputs to the collective operation. Copying (802) the con-
tents of the source buffer before performing the optimized
collective operation may be carried out by writing the con-
tents of the source buffer to a well-known memory location
such that the contents of the source buffer may be restored if
the optimized collective operation is not performed correctly.

In the example of FIG. 8, selecting (722) a next optimized
collective operation includes restoring (804) the copied con-
tents to the source buffer. Restoring (804) the copied contents
to the source buffer may be carried out by reading the contents
of a well-known memory location where the source buffer
was previously copied and writing the contents of that well-
known memory location in the source buffer.

For further explanation, FIG. 9 sets forth another exem-
plary method for optimizing collective operations by an
operational group on a parallel computer according to
embodiments of the present invention. The method of FIG. 9
is similar to the method of FIG. 7 in that the method of FIG.
9 includes receiving (704), by each of the nodes in the opera-
tional group, an instruction to perform a collective operation
type; selecting (712), by each of the nodes in the operational
group from a list of optimized collective operations, an opti-
mized collective operation for the collective operation type;
performing (714), by each of the nodes in the operational
group, the selected optimized collective operation; determin-
ing (718), by one or more of the nodes in the operational

US 9,424,087 B2

23

group, whether a resource needed by the one or more nodes to
perform the collective operation is not available; and if a
resource needed by the one or more nodes to perform the
collective operation is not available, notifying (720), by one
or more of the nodes in the operational group, the other nodes
that the resource is not available; selecting (722), by each of
the nodes in the operational group from the list of optimized
collective operations, a next optimized collective operation;
and performing (714), by each of'the nodes in the operational
group, the next optimized collective operation.

In the example of FIG. 9, the selected optimized collective
operation is also an in-place operation and performing (714)
the selected optimized collective operation includes blocking
(950) until receiving a notification that the operational group
is valid. A valid operational group is an operation group
whose geometry supports execution of the optimized collec-
tive operation. Blocking (950) until receiving a notification
that the operational group is valid may be carried out by
waiting for a notification that the operational group is valid
until executing the optimized collective operation. Determin-
ing whether a particular geometry and operational group is
valid may be performed by one or more of the nodes of the
operational group. Such an operation may be carried out
through another collective operation, such a simple operation
with a known result if the operation is performed correctly.
Upon determining that the operational group is valid, the one
or more nodes determining the validity of the operational
group may send a message to all other nodes in the opera-
tional group informing those nodes that the operational group
is valid and the optimized collective operation may be per-
formed.

For further explanation, FIG. 10 sets forth another exem-
plary method for optimizing collective operations by an
operational group on a parallel computer according to
embodiments of the present invention. The method of FIG. 10
is similar to the method of FIG. 7 in that the method of FIG.
10 includes receiving (704), by each of the nodes in the
operational group, an instruction to perform a collective
operation type; selecting (712), by each of the nodes in the
operational group from a list of optimized collective opera-
tions, an optimized collective operation for the collective
operation type; performing (714), by each of the nodes in the
operational group, the selected optimized collective opera-
tion; determining (718), by one or more of the nodes in the
operational group, whether a resource needed by the one or
more nodes to perform the collective operation is not avail-
able; and if a resource needed by the one or more nodes to
perform the collective operation is not available, notifying
(720), by one or more of the nodes in the operational group,
the other nodes that the resource is not available; selecting
(722), by each of the nodes in the operational group from the
list of optimized collective operations, a next optimized col-
lective operation; and performing (714), by each of the nodes
in the operational group, the next optimized collective opera-
tion.

In the example of FIG. 10, the one or more of the nodes of
the operational group supports transactional memory. Trans-
actional memory simplifies parallel programming by allow-
ing a group of load and store instructions to execute in an
atomic way for controlling access to shared memory in con-
current computing. A transaction that is not committed, that
is, completed, does not write over the data that is the input to
the collective operation in a source buffer. Therefore, in col-
lective operations on an operational group that supports trans-
actional memory, if the collective operation is not performed
correctly the data in the source buffers is preserved if the
transaction is not committed.

10

30

40

45

50

55

24

In the example of FIG. 10, performing (714) the collective
operation includes beginning (902) a transaction but not com-
mitting the transaction and selecting (722) a next optimized
collective operation includes starting (904) a new transaction
without committing the previous transaction. Beginning
(902) a transaction but not committing the transaction and
starting (904) a new transaction without committing the pre-
vious transaction may be carried out through the use of a
transactional memory module implemented either as soft-
ware, hardware, or both hardware and software. In such cases,
if the optimized collective operation is not correctly per-
formed the transaction is not committed thereby preserving
the values of the inputs of the collective operation. Similarly,
in the example of FIG. 10,

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language

US 9,424,087 B2

25

or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its

10

15

20

25

30

35

40

45

50

55

60

65

26

true spirit. The descriptions in this specification are for
purposes of illustration only and are not to be construed in
a limiting sense. The scope of the present invention is
limited only by the language of the following claims.
What is claimed is:
1. A method of optimizing collective operations by an
operational group on a parallel computer, wherein the opera-
tional group comprises a plurality of compute nodes, the
method comprising:
receiving, by each of the nodes in the operational group,
an instruction to perform a collective operation type;

selecting, by each of the nodes in the operational group
from a list of optimized collective operations, an opti-
mized collective operation for the collective operation
type;
performing, by each of the nodes in the operational group,
the selected optimized collective operation;

determining, by one or more of the nodes in the opera-
tional group, whether a resource needed by the one or
more nodes to perform the collective operation is not
available;

if a resource needed by the one or more nodes to perform

the collective operation is not available:

notifying, by one or more of the nodes in the opera-
tional group, the other nodes that the resource is not
available;

selecting, by each of the nodes in the operational group
from the list of optimized collective operations, a
next optimized collective operation; and

performing, by each of the nodes in the operational
group, the next optimized collective operation.

2. The method of claim 1 wherein determining, by one or
more of the nodes in the operational group, whether a
resource needed by the one or more nodes to perform the
collective operation is not available further comprises iden-
tifying an invalid class route.

3. The method of claim 1 wherein determining, by one or
more of the nodes in the operational group, whether a
resource needed by the one or more nodes to perform the
collective operation is not available further comprises iden-
tifying an link failure on a link adjacent to the one or more
nodes.

4. The method of claim 1 wherein the selected optimized
collective operation further comprises an in-place operation;
and

performing the selected optimized collective operation

includes copying the contents of the source buffer
before performing the optimized collective operation;
and

selecting a next optimized collective operation further

comprises restoring the copied contents to the source
buffer.

5. The method of claim 1 wherein one or more of the
nodes of the operational group supports transactional
memory; and

performing the collective operation includes beginning a

transaction but not committing the transaction; and
selecting a next optimized collective operation further
comprises:

starting a new transaction without committing the previ-

ous transaction.

6. The method of claim 1 wherein the selected optimized
collective operation further comprises an in-place operation;
and

performing the selected optimized collective operation

includes blocking until receiving a notification that the
operational group is valid.

US 9,424,087 B2

27

7. The method of claim 1 wherein the parallel computer
comprises:

a plurality of compute nodes;

a first data communications network coupling the com-
pute nodes for data communications and optimized for
point to point data communications; and

a second data communications network that includes data
communications links coupling the compute nodes so
as to organize the compute nodes as a tree, each
compute node having a separate arithmetic logic unit
(‘ALU”) dedicated to parallel operations.

8. The method of claim 1 wherein the parallel computer
comprises a plurality of compute nodes and where the
compute nodes comprise:

a host computer having a host computer architecture; and

an accelerator having an accelerator architecture, the
accelerator architecture optimized, with respect to the
host computer architecture, for speed of execution of a
particular class of computing functions, the host com-
puter and the accelerator adapted to one another for
data communications by a system level message pass-
ing module.

9. An apparatus for optimizing collective operations by an
operational group on a parallel computer, the apparatus
comprising a computer processor and a computer memory
operatively coupled to the computer processor, the computer
memory having disposed within it computer program
instructions for:

receiving an instruction to perform a collective operation
type;

selecting an optimized collective operation for the col-
lective operation type;

performing the selected optimized collective operation;

determining whether a resource needed by the one or
more nodes to perform the collective operation is not
available;

if a resource needed by the one or more nodes to perform
the collective operation is not available:
notifying the other nodes that the resource is not

available; and
selecting a next optimized collective operation; and
performing the next optimized collective operation.

10. The apparatus of claim 9 wherein computer program
instructions for determining whether a resource needed by
the one or more nodes to perform the collective operation is
not available further comprises computer program instruc-
tions for identifying an invalid class route.

11. The apparatus of claim 9 wherein computer program
instructions for determining whether a resource needed by
the one or more nodes to perform the collective operation is
not available further comprises computer program instruc-
tions for identifying an link failure on a link adjacent to the
one or more nodes.

12. The apparatus of claim 9 wherein the selected opti-
mized collective operation further comprises an in-place
operation; and

computer program instructions for performing the
selected optimized collective operation includes com-
puter program instructions for copying the contents of
the source buffer before performing the optimized
collective operation; and

computer program instructions for selecting a next opti-
mized collective operation further comprises computer
program instructions for restoring the copied contents
to the source buffer.

20

25

30

35

45

50

60

65

28

13. The apparatus of claim 9 wherein one or more of the
nodes of the operational group supports transactional
memory; and

computer program instructions for performing the collec-
tive operation further comprises beginning a transac-
tion but not committing the transaction; and

computer program instructions for selecting a next opti-
mized collective operation further comprises starting a
new transaction without committing the previous trans-
action.

14. The apparatus of claim 9 wherein the parallel com-

puter comprises:

a plurality of compute nodes;

a first data communications network coupling the com-
pute nodes for data communications and optimized for
point to point data communications; and

a second data communications network that includes data
communications links coupling the compute nodes so
as to organize the compute nodes as a tree, each
compute node having a separate arithmetic logic unit
(‘ALU”) dedicated to parallel operations.

15. The apparatus of claim 9 wherein the parallel com-
puter comprises a plurality of compute nodes and where the
compute nodes comprise:

a host computer having a host computer architecture; and

an accelerator having an accelerator architecture, the
accelerator architecture optimized, with respect to the
host computer architecture, for speed of execution of a
particular class of computing functions, the host com-
puter and the accelerator adapted to one another for
data communications by a system level message pass-
ing module.

16. A computer program product for optimizing collective
operations by an operational group on a parallel computer,
the computer program product disposed in a non-transitory,
computer readable storage medium, the computer program
product comprising computer program instructions for:

receiving an instruction to perform a collective operation
type;

selecting an optimized collective operation for the col-
lective operation type;

performing the selected optimized collective operation;

determining whether a resource needed by the one or
more nodes to perform the collective operation is not
available;

if a resource needed by the one or more nodes to perform
the collective operation is not available:
notifying the other nodes that the resource is not

available; and
selecting a next optimized collective operation; and
performing the next optimized collective operation.

17. The computer program product of claim 16 wherein
computer program instructions for determining whether a
resource needed by the one or more nodes to perform the
collective operation is not available further comprises com-
puter program instructions for identifying an invalid class
route.

18. The computer program product of claim 16 wherein
computer program instructions for determining whether a
resource needed by the one or more nodes to perform the
collective operation is not available further comprises com-
puter program instructions for identifying an link failure on
a link adjacent to the one or more nodes.

19. The computer program product of claim 16 wherein
the selected optimized collective operation further com-
prises an in-place operation; and

US 9,424,087 B2
29

computer program instructions for performing the
selected optimized collective operation further com-
prises computer program instructions for copying the
contents of the source buffer before performing the
optimized collective operation; and 5

computer program instructions for selecting a next opti-
mized collective operation further comprises computer
program instructions for restoring the copied contents
to the source buffer.

20. The computer program product of claim 16 wherein 10
one or more of the nodes of the operational group supports
transactional memory; and

computer program instructions for performing the collec-

tive operation further comprises beginning a transac-
tion but not committing the transaction; and 15
computer program instructions for selecting a next opti-
mized collective operation further comprises starting a
new transaction without committing the previous trans-
action.
20

